
Collision Shapes
So far we've only built box collision shapes, but Bullet offers much more variety 
than this. In this chapter, we'll explore some more built-in collision shapes to bring 
more variety into our scene. We will initially cover some more built-in shapes such 
as spheres and cylinders, and then explore how to build unique, customized shapes 
through convex hulls and compound shapes.

Spheres and cylinders
The btSphereShape and btCylinderShape are the two collision shapes that  
could not be more simple; they define a sphere and cylinder, respectively.

Continue from here using the Chapter7.1_
SpheresAndCylinders project files.

We already know how to create btBoxShape, and building these new built-in shapes 
is not much different. Note that nothing about the way we handle rigid bodies or 
motion states changes when we start working with different collision shapes. This is 
one of the big advantages of the Bullet's modular object system. These new shapes 
can be instantiated in the creation of a new GameObject as follows:

CreateGameObject(new btSphereShape(1.0f), 1.0, btVector3(0.7f,  
  0.7f, 0.0f), btVector3(-5.0, 10.0f, 0.0f));
CreateGameObject(new btCylinderShape(btVector3(1,1,1)), 1.0,  
  btVector3(0.0f, 0.7f, 0.0f), btVector3(-2, 10.0f, 0.0f));

Simple, right? Unfortunately, we now face a more significant challenge: how to 
render these new objects? We could just render them like boxes, but this won't be 
ideal. We'll need to introduce some new drawing functions, akin to DrawBox(), 
which render objects of differing shapes and sizes. Thanks to the rigorous refactoring 
we performed on our rendering code back in Chapter 4, Object Management and Debug 
Rendering, we have made this whole process fairly trivial on ourselves.



Collision Shapes

[ 90 ]

DrawSphere() uses a new OpenGL primitive type, GL_QUAD_STRIP, to create strips of 
quads. A quad is made of four points, rather than three points for a triangle. A strip of 
quads is built two vertices at a time, since they are connected together in strips end-to-
end. This is a much more efficient way of rendering many primitives in one step.

In order to generate a spherical object of a given radius with quads, we have to iterate 
laterally, find the angles of this segment, then iterate longitudinally, and draw them.

Meanwhile, to draw a cylinder we can make use of a new helper function in OpenGL 
to build the cylinder piece-by-piece using quadrics to build two disks via gluDisk(), 
and a cylindrical hull via gluCylinder(). These quadric functions are built into 
FreeGLUT, providing an interface with which we can build meshes using simple 
mathematical equations. There are various types of quadrics that are available in the 
FreeGLUT library, which you can find in the documentation and/or source code.

To save space we won't cover any code snippets here, since there are far too many 
bite-size simple commands being introduced. But, take the time to look at the new 
functions DrawSphere(), DrawCylinder(), and the changes to DrawShape().

Our application now renders a yellow sphere and green cylinder to accompany our 
two original boxes. Try shooting boxes at them and observe their motion. They behave 
exactly as we would expect a physics object of that shape to behave! The following 
screenshot shows our new cylindrical and spherical objects added to our scene:



Chapter 7

[ 91 ]

Convex hulls
Next, we'll explore how Bullet lets us build custom collision shapes through the  
use of convex hulls.

Continue from here using the Chapter7.2_ConvexHulls project files.

Much like our OpenGL code, we provide the vertex points from which to build the 
object and Bullet takes care of the hard work for us; in fact Bullet makes it even easier 
than that, because we don't need to define indices or provide them in a specific order 
of rotation. Bullet will always try to create the simplest convex shape it can from the 
given set of points (also known as a point cloud or vertex cloud in this context). It is 
important for the objects to be convex because it is orders of magnitude is easier to 
calculate collisions with convex shapes (those without any internal dips or caves in 
the shape) than with concave shapes (those with caves in its surface).

A convex hull is defined by the btConvexHullShape class. We must perform a little 
programming gymnastics to create our convex hull, by generating an array of five 
btVector3s, and passing the memory address of the first point's x coordinate into 
our convex hull. This may seem confusing at first, but it's straightforward once we 
appreciate the importance of contiguous memory.

A btVector3 consists of four floats: x, y, z, and an unused buffer float. Why is there 
an unused variable in this object? Because CPUs are very efficient while working 
in powers of 2, and since a float is 4 bytes large, that makes an entire btVector3 
object 16 bytes large. Throwing in an unused float like this is a good way to force the 
compiled code to make these objects 16 bytes large. This is yet another one of those 
low-level optimizations to be found in Bullet. In addition, an array of btVector3s  
are contiguous in memory (by definition) such that they follow one another 
sequentially by address.

Point 1
x y z -

Point 2 Point 3 Point 4 Point 5
x x x xy y y yz z z z- - - -

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Five btVector3 objects contiguous in memory.

The btConvexHullShape constructor expects us to provide three things: the memory 
address of start of a list of vertex points, the number of vertices, and the stride, or 
how many bytes in memory it should jump to reach the next vertex.



Collision Shapes

[ 92 ]

Since the memory address must be provided in the form of btScalar, we will call 
getX() on the first point to get the memory address that we need. The number of 
vertices is required so that it knows when to stop counting (computers are stupid like 
that), and the stride is necessary to determine how to count. The default value for 
the stride is 16 bytes, which is (not by coincidence) the size of a btVector3 object; so 
there's actually no need to provide this argument, but it is worth mentioning because 
this concept appears all the time when working with vertex and index buffers.

Hopefully things become clear once we explore the code for this procedure:

// create a vertex cloud defining a square-based pyramid 
  btVector3 points[5] = {btVector3(-0.5,1,1),
  btVector3(-0.5,1,-1),
  btVector3(-0.5,-1,1),
  btVector3(-0.5,-1,-1),
  btVector3(1,0,0)};
// create our convex hull
  btConvexHullShape* pShape = new  
    btConvexHullShape(&points[0].getX(),5);
// initialize the object as a polyhedron
pShape->initializePolyhedralFeatures();
// create the game object using our convex hull shape
CreateGameObject(pShape, 1.0, btVector3(1,1,1), btVector3(5, 15,  
  0));

There's one erroneous function call above, initializePolyhedralFeatures(). This 
function can be called on a convex hull shape to convert the data into a special format 
that gives us access to some convenient functions that we'll need to render the object 
later. It essentially builds the indices and vertices for us, so we don't have to.

Once again, we can throw this shape into our GameObject constructor and it is 
none the wiser. The only part of our code that cares is our rendering code. Once 
again we will skip providing the actual code here, but check out the new function 
DrawConvexHull() and changes to DrawShape() to observe the process of rendering 
these shapes. It is doing little more than grabbing the polyhedral vertex/index data 
and rendering the relevant triangles.



Chapter 7

[ 93 ]

The following screenshot shows our application, which now includes a white 
pyramid shape falling from the sky along with our original shapes:

An important point to note before we move on is that Bullet assumes the center 
of mass of the object is at (0,0,0) relative to the given points, ergo the points must 
be defined around that location. If we wish to set the center of mass to a different 
location, then we must call the setCenterOfMassTransform() function on the 
object's rigid body.



Collision Shapes

[ 94 ]

Creating convex hulls from mesh data
Building a convex hull by manually typing in the vertex data can be incredibly 
tedious. So Bullet provides methods for loading customized mesh file data into the 
desired vertex format that we used earlier, provided the data has been stored in the 
.obj format (a common format that every 3D modeling tool supports these days). To 
see this process in action, check out the App_ConvexDecompositionDemo application 
in the Bullet source code.

However, be warned that creating convex hulls from a complex shape (such as 
a table or a four-legged chair) requires a lot of CPU cycles to generate accurate 
collision responses for them. It is wise to stick with simple collision shapes that 
estimate the physical object, such as boxes and spheres, unless absolutely necessary.

Compound shapes
Bullet also allows us to build another type of customized physics object by combining 
multiple child shapes together into a parent compound shape.

Continue from here using the Chapter7.3_
CompoundShapes project files.

Compound shapes are treated much the same way as any other shape, except its 
constituent pieces are stuck together by a set of very rigid constraints (much like the 
constraints we explored in Chapter 5, Raycasting and Constraints). We'll use compound 
shapes to create a dumbbell, a pair of spheres connected via a connecting rod.

Note that the child shapes do not need to touch one another 
for the compound shape feature to work. The child shapes 
could be separated by great distances and still behave as if 
they were tightly coupled.

The class in question is the btCompoundShape class. The member function 
addChildShape(), attaches the given child shape into the compound shape at  
the given transform. Therefore a simple compound shape can be built as follows:

// create two shapes for the rod and the load
btCollisionShape* pRod = new btBoxShape(btVector3(1.5f, 0.2f,  
  0.2f));
btCollisionShape* pLoad = new btSphereShape(0.5f);
// create a transform we'll use to set each object's position 
  btTransform trans;



Chapter 7

[ 95 ]

trans.setIdentity();
// create our compound shape
btCompoundShape* pCompound = new btCompoundShape();
// add the rod
pCompound->addChildShape(trans, pRod);
trans.setOrigin(btVector3(-1.75f, 0.0f, 0.0f));
// add the top load
pCompound->addChildShape(trans, pLoad);
trans.setIdentity();
// add the bottom load
trans.setOrigin(btVector3(1.75f, 0.0f, 0.0f));
pCompound->addChildShape(trans, pLoad);
// create a game object using the compound shape
CreateGameObject(pCompound, 2.0f, btVector3(0.8,0.4,0.1),  
  btVector3(-4, 10.0f, 0.0f));

Bullet lets us create yet another complex physics object with only a handful 
of instructions. But, yet again, we have the problem of rendering this shape. 
We can use the compound shape's member functions getNumChildShapes(), 
getChildTransform(), and getChildShape() to iterate through the child shapes, 
but remember that our DrawShape() command only accepts a single shape to draw 
at a time, and if we push our compound shape into a game object and render it, it 
would not draw anything, because the parent itself is not one of the supported types.

What we must do is to call the DrawShape() function recursively for each child  
as follows:

case COMPOUND_SHAPE_PROXYTYPE:
{
  // get the shape
  const btCompoundShape* pCompound = static_cast<const  
    btCompoundShape*>(pShape);
  // iterate through the children
  for (int i = 0; i < pCompound->getNumChildShapes(); ++i) {
    // get the transform of the sub-shape
    btTransform thisTransform = pCompound->getChildTransform(i);
    btScalar thisMatrix[16];
    thisTransform.getOpenGLMatrix(thisMatrix);
    // call drawshape recursively for each child. The matrix
    // stack takes care of positioning/orienting the object for us
    DrawShape(thisMatrix, pCompound->getChildShape(i), color);
  }
  break;
}



Collision Shapes

[ 96 ]

If the purpose of the matrix stack wasn't clear earlier, then the preceding exercise 
might help. When the two weights of the dumbbell are drawn, it might appear that 
the only transform information given are the positions at (-1.75,0,0) or (1.75,0,0), 
and yet it doesn't always render at those exact world space coordinates.

In reality, it renders at the above location relative to the parent object. But why?  
This powerful mechanism is achieved by adding the child's transformation matrix 
to the stack (with another call to glPushMatrix()) rendering the child, removing its 
transform from the stack (with another call to glPopMatrix()), and repeating for the 
next child. Thus, wherever the parent's transform begins, the matrix stack ensures 
that the children are always drawn relative to that starting location.

Our application now features our new dumbbell object:

Our new dumbbell object

It's worth mentioning that we only created two unique shapes in memory for our 
dumbbell: one for the rod and one for the load. Yet, our dumbbell is built from three 
unique shapes. This is an essential memory saving feature of collision shapes. Their 
data can be shared by more than one collision object, and still be treated as two 
unique instances.



Chapter 7

[ 97 ]

Summary
We have created four new types of Bullet collision shapes in our application by 
introducing more case statements to our DrawShape() function. Any object can be 
built from primitive shapes such as triangles, quads, and so on (which is why they're 
called primitives), but we have also discovered that there are helper functions inside 
FreeGLUT called quadrics which make this process easier for us.

In the next chapter, we will explore how collision filtering can be used to develop 
interesting physics behavior and game logic.


